New insights into the mechanism of initial transcription: the T7 RNA polymerase mutant P266L transitions to elongation at longer RNA lengths than wild type.
نویسندگان
چکیده
RNA polymerases undergo substantial structural and functional changes in transitioning from sequence-specific initial transcription to stable and relatively sequence-independent elongation. Initially, transcribing complexes are characteristically unstable, yielding short abortive products on the path to elongation. However, protein mutations have been isolated in RNA polymerases that dramatically reduce abortive instability. Understanding these mutations is essential to understanding the energetics of initial transcription and promoter clearance. We demonstrate here that the P266L point mutation in T7 RNA polymerase, which shows dramatically reduced abortive cycling, also transitions to elongation later, i.e. at longer lengths of RNA. These two properties of the mutant are not necessarily coupled, but rather we propose that they both derive from a weakening of the barrier to RNA-DNA hybrid-driven rotation of the promoter binding N-terminal platform, a motion necessary to achieve programmatically timed release of promoter contacts in the transition to elongation. Parallels in the multisubunit RNA polymerases are discussed.
منابع مشابه
Relaxed Rotational and Scrunching Changes in P266L Mutant of T7 RNA Polymerase Reduce Short Abortive RNAs while Delaying Transition into Elongation
Abortive cycling is a universal feature of transcription initiation catalyzed by DNA-dependent RNA polymerases (RNAP). In bacteriophage T7 RNAP, mutation of proline 266 to leucine (P266L) in the C-linker region connecting the N-terminal promoter binding domain with the C-terminal catalytic domain drastically reduces short abortive products (4-7 nt) while marginally increasing long abortives (9-...
متن کاملA mutation in T7 RNA polymerase that facilitates promoter clearance.
Like multisubunit RNA polymerases (RNAPs), T7 RNAP frequently releases its transcript over the initial 8-12 transcribed nucleotides, when it still contacts the promoter. This abortive cycling, which is most prominent with initial sequences that deviate from those of T7 late genes, eventually compromises productive transcription. Starting from an in vivo situation where transcription of a target...
متن کاملFolding of a large ribozyme during transcription and the effect of the elongation factor NusA.
We compared in vitro transcription-initiated folding of the ribozyme from Bacillus subtilis RNase P to refolding from the full-length, denatured state by monitoring the appearance of its catalytic activity. At 37 degrees C, Mg(2+)-initiated refolding of the wild type and a circularly permutate ribozyme takes minutes and is limited by a kinetic trap. Transcription by T7 RNA polymerase alters the...
متن کاملMutations induced by bacteriophage T7 RNA polymerase and their effects on the composition of the T7 genome.
We show here that transcription by the bacteriophage T7 RNA polymerase increases the deamination of cytosine bases in the non-transcribed strand to uracil, causing C to T mutations in that strand. Under optimal conditions, the mutation frequency increases about fivefold over background, and is similar to that seen with the Escherichia coli RNA polymerase. Further, we found that a mutant T7 RNA ...
متن کاملCross-linking of promoter DNA to T7 RNA polymerase does not prevent formation of a stable elongation complex.
T7 RNA polymerase recognizes a small promoter, binds DNA, and begins the process of transcription by synthesizing short RNA products without releasing promoter contacts. To determine whether the promoter contact must be released to make longer RNA products and at what position the promoter must be released, a mutant RNA polymerase was designed that allows cross-linking to a modified promoter vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 287 44 شماره
صفحات -
تاریخ انتشار 2012